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AbslracL Molecular dynamics simulations are reported of the melting of small inclusions 
of rare gases in cavities 10-20 A in radius in metals containing a few hundred gas atoms. 
Such systems enable us to study the melting phenomena of clusters of atoms mnstrained 
by the cavity walls. We have looked at the positions of the atoms, the phase diagrams, 
and the importance of fluctuations for bubbles of different sizes. Melting in these 
sptems fakes place over a finite temperature range as in simulations of isolated clusten 
The geometric Structure [actors have been calculated and compared with recent x-ray 
diffrauion measurements of Andersen er a1 on hypton inclusions in aluminium. Our 
inability Lo reproduce the experimentally obsewed increase in the LransverSe diffraction 
peak width with temperature suppolts the suggestion of Andersen er a1 that this increase 
is due to a roughening transition of the aluminium facets of the cavities. 

1. Introduction 

A detailed understanding of melting is an outstanding challenge to condensed matter 
physicists. Although analytical approaches such as the recent one of Ttllon [l] and 
computer simulations, e.g. those of Lee and Low [2], have made some headway, the 
process remains poorly understood. As far as computer simulation is concerned, the 
prime difficulty in looking at bulk melting lies in the need to simulate very large 
systems since the vacancy concentration at melting is about one in IO4 atoms, and 
large system are needed to make conclusions about the effects of defects such as 
vacancies [3], surfaces and interfaces [4]. 

However, it is possible to make some progress towards a theory of melting by 
studying small clusters of atoms which are easy to simulate and have a large surface 
to volume ratio, emphasizing surface contributions. Interest in phase transitions 
in finite systems has been spurred on by the observation of broadened solid-fluid 
transitions in simulations of isolated clusters [5,6]. The melting transition for the 
clusters takes place over a finite temperature range as the temperature is raised, 
instead of at a well-defined melting temperature as for macroscopic systems [7-lo]. 
Recent theoretical work [%lo] has indicated that in the transition region between 
the well-defined solid and fluid phases there is a phase coexistence between the solid 
and liquid phases with individual clusters at a given time being either all solid or all 
liquid. The fraction of clusters in a given phase changes with temperature which leads 
to the observation of a broadened transition when an ensemble of clusters is studied. 
Recent measurements of optical absorption spectra of benzene-doped Ar clusters [ll] 
appear to be consistent with a coexistence region although this interpretation of the 
results has recently been questioned by Fried and Mukamel 1121. 
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An inherent difficulty in studying unsuspended clusters is the short time, i.e. the 
time of flight, over which the clusters can be observed. Much easier systems from 
an experimental point of view are rare-gas inclusions in metals, on which much work 
has been done in the last decade [13-25]. It is therefore important to establish if the 
phase transitions in the inclusions, in which the gas density, and hence the pressure, 
normally is very high, exhibit a broadening similar to that predicted for isolated 
clusters. 

In this paper we report on molecular dynamics simulations of the melting of rare- 
gas inclusions. Our work was motivated by the experimental studies referred to above. 
Questions raised in those studies which we have tried to answer include: (i) whether 
a significant broadening of the melting transition is observed for typical bubble sizes 
and gas densities studied experimentally; (3) whether the melting is initiated at the 
surface as suggested by Bohr [26]; (E) the extent to which pressures differ from thosc 
predicted from a bulk equation of state. 

We have also calculated the geometrical x-ray structure factors which enables a 
direct comparison to be made with the data reported in [l3]. Our work follows on 
from simulations of noble-gas bubbles in metals by Jensen and Nieminen [27] who 
investigated the ordering of the rare-gas atoms at the interface. To our knowledge, 
the only other simulations which explicitly include the effect of the metal-rare-gas 
interactions in a cavity, those of Bug [a], were for systems with less than 50 atoms 
only and were confined to calculations of the pair correlation function and density. 
Chui [29] has studied particles, represented by hard spheres, in a spherical cavity 
by Monte Carlo simulations but made only indirect inferences about the melting 
process. These results are discussed in section 4.2 below, along with some very recent 
simulations of coated clusters by Broughton [30]. 

Rare-gas inclusions (bubbles) have attracted a great deal of technological interest, 
principally because they occur in radiation damage in fission and fusion reactors 
where neutrons produce He by (n, a) reactions within the reactor walls [31] and, in 
the case of the heavier rare gases, are used in ion beam modification of materials, 
e.g. the production of new alloys by ion beam mixing. Bubbles are likely to form in 
the bombarded materials because of the low solubility of rare gases in metals and the 
state of the particles, whether fluid or solid, will affect the growth of the inclusions 
both during implantation and subsequent annealing. 

Our simulations have been made with parameters appropriate to krypton in alu- 
minium to enable us to make direct comparisons with the measured x-ray scattering 
Structure factors of Andersen et ai [13]. These authors found from the x-ray diffrac- 
tion peaks that their Kr-implanted AI samples contained a bimodal distribution of 
bubbles with small bubbles of average radius 17.5 8, and large bubbles of average 
radius 90 8, In this paper we concentrate on the behaviour of the smaller bubbles 
since these contain the highest density of gas and the effect of the cavity walls on the 
melting transition is expected to be more pronounced than for the large bubbles. In 
addition to 17.5 & we have also looked at bubble radii 14.4 ,& and 10.0 & in order 
to establish how the bubble size affects the melting transition. 

In section 2, we give the specifications of the system simulated and how the 
simulation was performed, including a discussion of how to calculate the pressure in 
a confined system and the geometrical x-ray structure factors. Section 3 covers our 
results and their implications are discussed in section 4. Section 5 summarizes our 
conclusions. 
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2. Methods 

21. CaviIy geometry 

In these simulations the metal was taken as the continuum surroundings of a rigid 
cavity with smooth walls. The shape of the cavity is that of a body- centred-cubic 
WignerSeitz cell, namely a truncated octahedron bounded by (111) and (100) planes 
1321. This shape is representative of a typical solid rare-gas bubble in a face-centred 
cubic metal [U]. The cavity can be considered as a cube of length L with its corners 
removed and has volume L 3 / Z  We determine L by setting the cavity volume equal 
to that of a spherical cavity with the effective radius required. 

2.2 Metal-gas interactions 

The metal-gas interaction potential was taken from the embedded atom approach of 
Manninen et a1 [33]. Here, the embedding energy of a rare-gas atom is calculated 
as a functional of the unperturbed electron density no(?) of the metal, leading to a 
pailwise potential of the form 

V(T)  = ano(?) (1) 

no(?) = nbUlk/(erl6 + 1) = nbulke -.la 

where a is a constant. By approximating no(r)  at the surface of the cavity by [34] 

r > 6 (2) 

where nbulk is the bulk valence electron density and defining r as the distance along 
a normal to the cavity face, we obtain 

V(r) = V,e-'/'. (3) 

The force from a given face is assumed to be perpendicular to that face and the total 
force is found as the vector sum of the forces from all faces of the cavity surface. 
Values of a= 133 eV A3 [27) and 6=0.348 8, [34] were used. Wz have not included 
the weak attractive Van der Waals interaction discussed by Jensen and Nieminen 
[27J as it is not important at the high gas densities and small cavity sizes we have 
studied here. The embedded atom potential may not be particularly accurate for the 
heavier rare gases bemuse of the large size of the atoms. However, the effect of the 
metal-gas potential is mainly to provide a rigid cavity in which the gas is contained 
and inaccuracies in the description of this potential will not affect our conclusions. 

23. Gas-gas interactions 

The Lennard-Jones 6-12 potential, i.e. 

V(r) = 4 e [ ( u / r ) ' *  - ( ~ / 7 - ) ~ ]  (4) 

where r is the distance between two gas atoms, has been used for the gas-gas 
interactions since more accurate potentials, such as those of Siska el ai 1351 for Ne 
and Ross et al [%I, are not very different from Lennard-Jones potentials [37] and 
not sufficiently different to affect the effects we are looking for. We have set €/ICB = 
164.0 K (where k, is Boltzmann's constant) and u=3.83 8, [MI. The potential was 
truncated at r=10 8, 
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24. Simulation dela& 

We have studied three sizes of cavities with effective radii R=10.0 .% 14.4 8. and 
17.5 8. containing 79, 201 and 459 atoms, repectively. The a t o m  were initially placed 
on a face-centred cubic lattice and given random velocities corresponding to the 
simulation temperature. The initial velocities were adjusted to make the linear and 
angular momenta equal to zero in the initial configuration. This procedure was used 
for the first run for each cavity size which was at room temperature. Subsequent 
runs were made at higher temperatures and used the positions and velocities from 
previous runs. This technique is a standard method for reducing equilibration times. 

We calculated the trajectories of the rare-gas atoms using standard molecular 
dynamics methods for a fixed volume system as described, for example, in Allen 
and Tildesley [3S]. A fifth-order predictorarrector algorithm was used [38]. The 
timestep used was 5 fs and the temperature was rescaled every 30 timesteps. Although 
we use a constant-energy algorithm (i.e. solving Newton's equation of motion) the 
frequent temperature rescaling ensures that the simulations effectively take place at 
constant temperature [3S] which is appropriate for clusters embedded in a metallic 
matrix held at a fixed temperature. The simulation code was checked by ensuring that 
it reproduced the pressure-volume isotherms of Kartunen er a1 [37l for bulk rare-gas 
solids, 

For each bubble size, ten identical runs with different initial atomic velocities 
were done. The runs were done in parallel on a transputer array using job farming 
techniques. In each run the system was equilibrated first at 3M) K after which the 
temperature was increased in 100 K steps. At each temperature the system was 
allowed to equilibrate for 5000 timesteps and subsequently followed for another 1000 
timesteps to determine the physical quantities of interest. 

The number of atoms and the exact value of the radius for the largest bubbles were 
adjusted to give a lattice parameter, as determined from the peaks in the structure 
factor, of 5.62 4 close to the 5.55 8. measured in the experiments of Andersen et a1 
[13]. The radii and number of particles for the small and medium-sized cavities was 
determined by the requirement that the pressure should be the same for all three 
sizes of cavity at rmm temperature which also implies that the lattice parameters are 
nearly identical for all bubbles sizes. 

For comparison with the bubble simulations a bulk Kr simulation with 256 atoms 
at constant volume with periodic boundaly conditions in all three dimensions was 
also performed. The density was adjusted to give the same pressure at 300 K as in 
the bubble simulations. 

25. Pressure calculations 

We have elected in this paper to calculate the pressure directly as the force exerted 
by the particles on the cavity walls per unit area. Denoting this pressure by Pw,,, we 
thus have 

where ( ) denotes a time average, A is the total surface area of the cavity and F;* 
is the magnitude of the normal component of the force due to the wall on particle 
number i. 
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It is important to note that in the systems studied here this definition gives a 
pressure significantly different from that calculated using the method conventionally 
used in molecular dynamics simulations which uses the virial theorem. This pressure, 
Pvirial, for a system of N particles at a temperature T in a volume s-2 is [39] 

NkBT + (Wid Vmal - 7 p.. - 

where the internal virial Win, is given by 

N 1 
3 n .  Win, = - ri . FP. 

.=1 
(7) 

Here F P  is the force on the ith atom a t  T~ due to all other particles but excluding 
the forces F;* due to the wall of the container. Equation (6) is obtained from the 
virial theorem which states that (see e.g. [a]) 

where the external virial W, is defined as 

and by identifying - W, with the pressure Pvitia,. 
The discrepancy between P,,,, and Pvitial arises because of the range of the 

particbwall forces not being vanishingly small compared to the total size of the sys- 
tem. This can be easily seen for a spherical cavity where W, = (1/3Q) vi F,e 
with ri being the distance from the centre of the cavity. Since all vi are smaller than 
or equal to the system radius R and 30  = A R  it follows that 

P W d I  2 Pririal .  (10) 

The equality in equation (IO) holds when the wall force is of zero range (i.e. for a 
hard wall) since in this case F;* is only different from zero when T~ = R. 

We suspect that the inequality (IO) holds for a cavity of general shape and certainly 
expect it to be valid in the present case, since the cavities are close to spherical. This 
is, in fact, confirmed by the results in section 3.2 below. 

Powles er ai [39] have also discussed the application of the virial theorem to 
pressure calculations in finite spherical systems. Their main result is that the vuml 
pressure calculated for a subset of particles in the system may not correspond to the 
true pressure. However, since they consider a hard-walled container they find that 
what we term the wall and virial pressures are indeed identical when all particles of 
the system are included in the calculation of the internal virial. Their results are thus 
consistent with the discussion above. 
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26. X-ray structure factors 

The x-ray intensity I for a scattering wavevector Ak = k - k', where I C ,  k' are, 
respectively, the incident and scattered x-ray wavevectors, is given by the modulus 
squared of the geometric structure factor [32]: 

Here the sum is over the N rare-gas atoms in the cavity. 
At the (111) peak 

while for a radial scan 

2 P  6 
Ak = -(I, I ,  I)  + --!-(I, 1, I )  

QKr J3 

and for a transverse scan 

where aKr is the lattice constant of the Kr in the cavity and SI and 6, are respectively 
the magnitudes of the deviation of the scattering wavevector from the scattering 
wavevector at the (111) peak for radial and transverse scans. 

The geometry is shown in figure 1. 

Figure 1. Schematic illustration of the geometry defining radial and transverse diffraction 
scans. Here k is the incoming x-ray wavweclor, k' the outgoing x-ray wavevector, 
Ak = k - k' is the scattering wavevector, and d the distance between adjacent lattice 
planes for a lattice of lattice constant a .  
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3. Results 

3.1. Time-averaged particle pasi~wm 
Figure 2 shows the positions of the gas particles from one of the simulation runs for 
cavities of effective radius 14.4 8. projected onto the (100) plane. The positions are 
shown for increasing temperatures of 300,900, 1100 and 1300 K, in all cases averaged 
over loo0 timesteps. From the figure, it is clear that melting takes place between 
1100 K and 1300 K. It is interesting to see that there is no evidence for premelting 
taking place at the surface of the inclusion. The melting would rather appear to be 
initiated at the corners, where the packing is less dense. 

- 4 L  
-4 -2 0 2 

x (A) 
-4 -2 0 2 
<loo> 

Figore 2. The positions of the 201 rare-gas aloms in a medium-size cavity (of effective 
radius 14.4 A), projected onto the (100) plane for temperatures of 300 K (panel a), 
900 K (panel b), 1100 K (panel c) and 1300 K (panel d). 

3.2. Cavify pressureF 

Figure 3 shows the wall pressure, PwaIl, and the virial pressure, PYIMl, for cavities of 
effective radius 17.5 A at increasing temperatures from 300 K to 1200 K. In all cases, 
the result shown is the average of the ten parallel simulations described in section 
2.4. It is clear that the inequality (IO) proven above holds and the approximately 
constant ratio between the two pressures is consistent with the fact that the inequality 
arises from the wall forcm having a non-zero range. 

The step in pressure between 700 and 800 K in figure 3 is associated with melting 
of the krypton as was confirmed by examining the atomic positions. The pressure 
results for all three bubble sizes and for the bulk system are shown in figure 4, 
again averaged over the ten simulation runs for each bubble size. In all systems a 
temperature range, in which melting takes place, can be identified, below and above 
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Flgure 3. The wall p-re Pwn and virial presure Pv;,ia, for caviIi5 of effective radius 
17.5 A as functions of temperature. 

5 0 ,  I 

A R 1 1 7 5 A  
D , R = 1 1 9 A  
0 R = 9 9 5 A  

_:_:.i.iii.?F:.i , ,. . : ,.. . 

D . R = l l d A  

. , ,. . 

Temperature ( K l ,  

Flgurc 4. The wall p w u r e  as a function of tempeldture’for the smali. medium and 
large cavities (panel a) and the medium-sized cavities compattd to a bulk syslem Of the 
same density (panel b). 

which the pressure varies linearly with temperature. This is in accordance with the 
obselvations for isolated clusters [S, lo]. We also confirm that the smaller the cavity 
size, the more diffuse the transition, i.e. the larger the temperature range over which 
melting takes place [q. The temperature at which the melting is initiated is seen to 
depend on the cavity size. 

We have investigated whether the apparently diffuse melting transition is due to 
averaging the pressure over different cavities of the same size which individually show 



The melting of rare-gas inclusions in ntetalr 5481 

800 1000 1200 1400 1800 1800 

T (K) 
Figure 5. The excess pressure, defined as the differ- 
ence bemeen the observed pressure and a straight- 
line fit to the p m u r e  below the onset of the melt- 
ing transition, as a function of temperature for ten 
different mns in the small cavities. For clarity, the 
resulu for each run have been displaced venically 
by an amount indicated (in GPa) for each of the 
CUNS in the figure. 

I " " " "  
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6 
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0.5 
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T (K) 
Fiinrc 6. As for figure 5 except that these results 
are for the medium-sized cavities. 

sharp phase transitions but at different temperatures, or if the phase transition is 
diffuse for each individual cavity. We did this by calculating excess pressure, A P ,  
defined as the difference between the real pressure and the pressure obtained from a 
straight-line fit to the data below the melting transition (sec figure 4). Figures 5 and 
6 show our results for A P for cavities of effective radii 10 %, and 14.4 respectively. 
The different cuwes show A P  for the ten runs done for each system. Note that the 
results have been displaced vertically for clarity. These figures show very clearly that 
the phase transition is diffuse for each run and that there are strong fluctuations in 
the pressure which are greater for the smaller cavities. 

3.3. Diffraction inlensdies 

As shown in subsection 26 above, it is straightforward to calculate the diffraction 
intensities from the simulated positions of the rare-gas atoms in the cavities and to 
examine the transverse and longitudinal scans around a given diffraction peak, as 
shown in figure 1. The intensities for radial scans around the (111) peak are shown 
in figures 7 and 8. In all cases the results have been averaged over the ten runs done 
for each cavity size. Figure 7 gives our results for temperatures of 300 K, 900 K ,  
1100 K and 1300 K respectively for cavities with effective radius 14.4 8, and figure 8 
gives results for cavities of effective radius 10.0 14.4 8, and 17.5 8, at 300 K and the 
temperature immediately above the melting region. An interesting feature, especially 
for the two smaller bubble sizes, is that even when the bubbles have melted there is 
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4 (A-') 
Figum 7. Radial scans of the geometrical struclure [actor around the ( I l l )  diffraction 
peak for medium-sized cavities (of effective radius 14.4 A) at temperatures of ux) K 
(panel a), 900 K (panel b), 11W K (panel c) and 1300 K (panel d). The scattcring 
vector Ak for each p i n 1  is given by equation (13) with 61 = Aq and afi=5.62 A. 

apparently sufficient ordering to produce a weak diffraction peak. 
The finite widths of the diffraction peaks arise from the finite number of atoms 

in each cavity and thermal disorder. The full width at half-maximum (FWHM) for the 
peaks in figure 7 is about 0.28 A-1 for temperatures 300 K, 900 K and 1100 K and 
about 0.22 A-' at 1300 K For figure 8, the FWHMS at 300 K are, respectively, about 
0.39 A-', 0.28 A-' and 0.22 A-'. The FWHM for figure S(c) agrees to within 10% 
with the width of 0.20 A-' measured at 300 K by Andersen et al [13]. However, 
we do not observe the slight linear increase in M M  with temperature seen in the 
experiments (131. 

Calculations of transverse diffraction scans give results that are substantially dif- 
ferent from the experimental results since the peak widths, like those for the radial 
scans, show very Little variation with temperature. Thus, we do not reproduce the 
dramatic increase in the width of the transverse scans observed experimentally [13]. 
The implications of this finding are discussed below. We have not presented our data 
for thc transverse peaks since they are very similar to the corresponding radial scans. 

4. Discussion 

4.1. Bubble pressures 
A warning implicit in the results of section 3.2 is that deducing pressures inside 
bubbles from a bulk equation of state, even an accurate one, as is the normal practice 
in studies of bubbles in metals [lq, is unlikely to give a m r a t e  results since we have 
demonstrated that the relationship between pressure and temperature depends on 
the cavity size. This observation casts doubt on much of the discussion of whether 
bubbles formed during ion implantation are over-pressurized, i.e. whether the pressure 
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R=175A 
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- 

As 09 
Flgure 8. Radial scans of the geometrical structure [actor around the (111) diffraction 
peak for (a) small, (b)  medium- and (c) large-sized cavilis. In each panel the solid and 
dashed lines correspond to temperature 300 K and a temperature immediately above the 
melting transition mnge, respectively. The scattering vector Ak for each point is given 
by equation (13) with 61 = Aq and a&=5.62 .& 

of the gas is higher than the surface tension of the bubble, since the bubble pressure 
invariably has been estimated using a bulk equation of state [lS,20,25]. 

4.2 The melting transition 

One of the key results of this work is the observation of a broadened melting transi- 
tion for the bubbles in analogy with that observed in simulations of isolated clusters 
[S, 101 and that the transition region between well-defined solid and fluid phases in 
some cases stretches over several hundred kelvin. Since the bubbles are embedded 
in a metal host it is straightfonvard to vary and monitor their temperature in exper- 
iments and the phase diagram can be examined by x-ray or electron diffraction. In 
particular, dark-field electron microscopy, which can monitor the diffraction intensity 
of indiiiduul bubbles [ 17,20,23], should be able to establish if there is a coexistence 
temperature range where bubbles are either solid or fluid and possibly determine if 
individual bubbles fluctuate between the two s t a t e s t h e  observation of fluctuations 
obviously requires them to occur on a timescale compatible with the experiments. 
The pressure fluctuations shown in figures 5 and 6 may be between solid and liquid 
states; however, more work is required to establish this point. 

There has been some discussion in the literature concerning ‘superheating’ effects 
in bubbles, i.e. whether the melting transition occurs at a higher temperature in a 
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bubble than for a bulk system with the same density [16,22,25]. In our results we 
see a clear size dependence of the melting transition-see section 3.2. However, 
the results also suggest why it is difficult to establish this effect experimentally. TO 
establish whether superheating occurs one has to estimate the melting temperature 
for the equivalent bulk system. This has normally been done by employing a bulk 
equation of state to get a pressure which is then used to estimate the bulk melting 
temperature [16,22,25]. However, as discussed above, the use of a bulk equation 
of state is not appropriate for small bubbles. Furthermore, the broadened transition 
makes it difficult to identify a unique melting temperature experimentally. 

We also find that even for a liquid bubble there is enough residual ordering to 
produce a solid-like diffraction peak, albeit of weak intensity. This result is consistent 
with the simulations of Jensen and Nieminen [27] of rare-gas atoms at a planar 
interface, who found that there were peaks in the gas density profiles for gas atoms 
close to the interface, even at temperatures where the bulk gas would be fluid. Their 
results and ours are related to the fact, proven by Finnis [41], that an arrangement 
of gas atoms with close-packed planes parallel to the cavity surface is energetically 
favourable compared to the condensation of the gas with loosely packed planes next 
to the metal. Jensen and Nieminen [27] conjectured that this ordering process might 
yield a solid-like diffraction pattern which is confirmed by the present results. 

The recent Monte Carlo simulation study of surface melting for clusters confined 
to a spherical cavity by Chui [29] does indicate melting at the wall surfaces through 
calculations of the local structure factor. However, it is pointed out in that paper 
that this suppression of order is peculiar to small spherical systems. For flat walls, 
the author states that the local structure factor would be expected to increase near 
the walls and in that case that fluids would not nucleate at the surface, which would 
be more consistent with our observations. 

Broughton 1301 has simulated clusters coated with higher-melting-point material 
and found that such clusters have an enhanced stability against melting. It is hard 
to make a direct comparison with our results as the outer coating was not rigid (the 
cluster including its coating was corifined to a region to maintain constant vapour 
pressure; however, that confinement did not interfere with the properties of the clus- 
ter) and the system size was an order of magnitude larger. However, it is interesting 
to see that in these simulations, as in ours, the interactions between the cluster and 
its mating or, in our case, between the cluster and cavity walls, are invoked to explain 
the superheating effects. 

4.3. Dilfracrion from bubbles and misalignnient 

As described in section 3.3 we do not observe the dramatic increase in the width of 
transverse diffraction scans above 300 K detected in the x-ray diffraction measure- 
ments of Andersen el a1 [13]. In the original publication [13] this effect was inter- 
preted as a loss of orientational alignment between the Kr in the bubbles and the 
AI host, possibly due to a roughening transition of the AI facets of the bubble which 
causes the cavity shapes to change from a truncated octahedron to approximately 
spherical. Bohr 1261 has, as an alternative, recently suggested that the measurements 
may be explained by the presence of a fluid krypton layer between the krypton and 
the host metal. The results presented in section 3.3 for the atomic positions (figure 2) 
do not confirm this hypothesis and the fact that we do not see the transverse peak 
broadening in our simulations vety strongly suggests that it cannot be due to mwe- 
ment of the Kr atoms alone, since the Kr motions should be described accurately by 
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the molecular dynamics method. Our results therefore support the earlier interpre- 
tation that the misalignment is due to rearrangement of the Al atoms at the cavity 
surface. 

5. Conclusion 

In this paper we have undertaken a computer simulation that for the first time 
has examined the melting of a cluster of particles in a coniined geometry in detail. 
Specifically we have looked at the case of a rare-gas solid in a rigid cavity. 

We find that the melting transition takes place over a finite temperature range 
due to the finite size of the system as has been observed earlier for isolated clusters. 
We have not found direct evidence for the coexistence of phases that has recently 
been explored in detail for isolated clusters 15.61, but observed pressure fluctuations 
that might signal oscillations between different phases. 

We have shown that the equation of state is affected by the size of the cavity, in 
that the pressure differs significantly from that for a bulk system at the same density. 
It was also shown that the pressure calculated using the virial theorem (which is the 
standard procedure in molecular dynamics simulations) differs from that obtained 
directly from the force of the particles on the wall of the cavity when the range of 
the wall forces is non-zero. 

Transverse and radial diffraction scans were calculated and compared with the 
experimental x-ray data of Andersen ef af [ 131 for Kr bubbles in Al. Although we 
find good agreement for the full-width half-maxima (FWHM) for the radial scans 
(apart from not seeing a small linear increase with temperature), we do not see the 
very rapid increase in the FWHMs for the transverse peaks with temperature observed 
experimentally indicating that this effect is due to movement of the AI a t o m  on the 
cavity surface, e.g. in a roughening transition. Nor do we see clear evidence for the 
premelting at the surface of the rare-gas solid, suggested by Bohr [%I. 

We hope to extend the present work to a wider range of bubble sizes, bubbles 
shapes, and rare-gas densities and to investigate the behaviour in the melting transi- 
tion region more closely. However, the results already obtained clearly demonstrate 
that rare-gas bubbles display the same type of melting behaviour as has attracted so 
much interest for isolated clusters and should hopefully inspire further experimental 
studies of the melting of rare-gas bubbles. 
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